


In ZeroAMP, we aim to produce versatile nano-electro-mechanical (NEM) switches, capable of surviving extremely hostile conditions, with no leakage power consumption.

#### **EXPLOITATION STRATEGIES**

Various emerging applications utilize ultra-low power sources and operate in harsh environmental conditions, where transistors cannot perform efficiently.



We are an industry-led project covering the entire commercial supply chain, as well as advanced R&D.

If you want to get in touch, drop us a message at info@zeroamp.eu



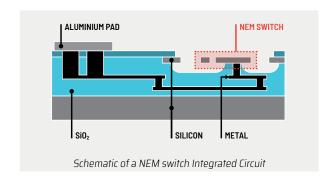
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871740 (ZeroAMP).

#### **IMPLEMENTATION**

# **Novel zero-leakage NEM switches**

Development of energy efficient circuits using NEM logic switches with zero-leakage current and bistable memory switches, based on new designs and materials, able to operate across the full temperature range.




Prototype of a NEM logic switch with zero leakage in the off state due to air gap



Bistable memory switch that retains the switched state through van der Waals forces

## Integration

Development of an ultra-high-density 3D stacking technology for the large-scale integration of NEM switches, on a multi-layer interconnect stack situated below the NEM switches.



# **Packaging**

Development of a wafer-level process for hermetic sealing of the NEM switches to ensure long-term reliability at high temperatures.

### **DEMONSTRATION**

# Energy-efficient Field Programmable Gate Array for harsh environments at Technology Readiness Level 4

Development of an FPGA demonstrator with >10k logic and memory switches in the same die, to produce efficient, reprogrammable logic circuits that retain their programmed state when switched off.

# Energy-efficient non-volatile memory for harsh environments at Technology Readiness Level 4

Development of a robust 16 kb non-volatile memory, based on a bistable memory switch that retains the switched state through stiction (van der Waals forces).

#### **OUR PARTNERS**

A well-balanced cluster of enterprises and institutions



Microchip Technology

Caldicot - UK



X-FAB MEMS Foundry GmbH

Erfurt – Germany



AMO GmbH

Aachen – Germany



**University of Bristol** Bristol – UK



KTH Royal Institute of Technology

Stockholm – Sweden



**CSEM** 

Neuchâtel – Switzerland



**SCIPROM** 

St-Sulpice – Switzerland

