Battery Passport Research Presentation

WMG – Who are we and what do we do?

Academic department of the University of Warwick

- Post Graduate Students Masters and PhD
- Industry Engagement Projects
- SME Support & Development
- Research Areas
 - Energy Batteries for transport
 - Manufacturing Automation & Methods
 - Autonomous Vehicles
 - Materials Analysis
 - Cyber Security

Contents

- Transport Drive to Electrification
- EV Battery Issues
- Mitigations
- What is a Battery Passport and why (Characteristics)
- MEMS Devices
- MEMS Technology + Passport Concept
- Battery in EV use passport requirements
- Envisions MicroChip Battery Passport Development
- What are the Industry, Social & User Paybacks ?
- References

Transport Drive to Electrification

- Automotive
- Rail
- Light Rail/Tram
- Buses
- Civil Aircraft
- Off-Road Plant
- Agriculture

EV Battery Issues

EV Battery Issues (Technical)

- Variable battery aging
 - Temperature
 - End of life capacity
 - Uneven cell capacity
 - Drive cycle variability
 - Charge Speed-of-Charge, frequency and total number
 - Manufacturing variability
 - Time left fully charged and discharged
 - Chemistry
 - System ac ripple
 - Remaining usable life

EV Battery Issues (Reliability)

• Failures

- Premature
 - Cell failure hard or soft short
 - Loss of Capacity
 - Loss of power
- Expected Characteristic
 - Cell impedance rise
 - Loss of Capacity
 - Loss of power

Commercial (EV Battery Issues)

- Commercial
 - End of life application premature (80%) + inflates cost of battery
 - Cost of recycling/disposal
 - Difficult value assessment for used batteries + rewarranty issues

Mitigations (EV Battery Solutions)

- Technical
 - Currently used

Variable battery aging – Tracking characteristics by cell/pack/module sensing

Prediction algorithms

Historical logging at pack level

• Additional possibility

Variable battery aging - Logging of History at cell level

- Reliability
 - Currently used limited temp. & voltage Sensing, active balancing Prediction algorithms
- Failures
 - Currently used

Battery Management system (BMS) – reports, detects and logs

Mitigations (Commercial Battery Solutions)

- Commercial (future)
 - Premature End of life inflates cost
 - Re-use battery for different application
 - Cost of recycling/disposal
 - Extend life or pass all/partial cost to resale party
 - Difficult value assessment for used batteries + rewarranty issues
 - Log battery history and performance over time

THE UNIVERSITY OF WARWICK

Mitigation Thread

For Commercial Costs, battery redeployment is a key driver...

- Problem?
 - Battery Pack logging & monitoring not sufficient for redeployment in second life application
- Why?
 - The battery will likely need reconfiguration at cell or module level in different casing
 - Insufficient history, traceability and performance details
 - Likely second life applications industrial and domestic grid store (different configurations)
- What is needed?
 - An integrated traceable history and performance within the cell

We call this a Cell Passport

+

Great for customers with improved reliability and predictability

What is a Battery Passport and why ?

(Fundamental Battery Passport characteristics)

The Requirement...

- From two primary areas
 - Battery reliability/predictability in EV use
 - Second life commercial viability
- Fundamentally to...
 - Know the history of use over time
 - Current State of battery health/predictive life
 - Disassemble a pack without Losing History

Where we are at the moment?

• WMG have implemented some of the sensing and passport functionality including power line communication

MEMS Devices (Micro-Electro-Mechanical-Systems)

- Essentially transducers or (energy converters)
- miniaturized mechanical and electro-mechanical elements using the microfabrication techniques
- Applied to temperature, pressure, inertial forces, chemical species, magnetic fields, radiation
- Applications automotive, medical, RF switching, Comms. tuned circuits, Energy scavenging

MEMS and Integrated Future Battery Sensing

- MEMS devices
 - Cell by Cell pressure measurement
 - Mechanical shock accelerometers
 - Cell orientation (aerospace) gyroscopes
- + Other electronic sensing
 - Cell internal thermal shock (overcurrent)
 - Cell electrode colour change
 - Electrolyte gassing detection
 - Voltage, Current (magnitude and direction)
- + Logging
 - Memory & Processing
 - Communications RFID, Power-Line, RF

MEMS Technology + Passport Concept

THE UNIVERSITY OF WARWICK

Environmental Challenges in Batteries

- Corrosive Electrolyte
- Wide range of temperatures -50 to +70 in aerospace
- Small Package required to not infringe on Coulomb storage capacity
- High vibration environment
- Magnetic fields in operation
- Calibration & Drift

Battery in EV use - passport requirements

- Parameters required:
 - Date of manufacture + Serial Number + Revision number + Cell type
 - Initial Ah Capacity, Current Ah Capacity
 - Hours in operation (since first charge Low power timer only mode needed)
 - Total hours charging, Total hours discharge
 - Peak current magnitude and duration
 - Cell Temperature & other sensing Max & Min + max event duration
 - Current State of charge
 - Cell Voltage Max & Min cell voltage (half cell potential with third electrode)
 - Thermal event early detection /prediction (using third electrode)
 - 24 hours of FIFO sensing history, sample time 1 second (operational) (BMS trigger start or current threshold auto start selectable)
 - Battery system 'off' 5 min cell sample (low power wake-up) temp. & Voltage only

Integration Challenges

- Conventionally Multiple devices in combination
- Electro mechanical sensing, electrical sensing, processing, memory, communications

(Silicon based devices have temperature limitations)

- Conventional MEMS devices offer some integration
- EEPROM can leak charge at high temperatures (data may be lost)

Envisions MicroChip Battery Passport

- Microchip 'Zero-Amp' technology
- Nano-electro-mechanical switches (NEM)
- Chip Technology wide temperature -55 to +300 deg. C
- 'Mechanical' non-volatile RAM
- FPGA and multi-layer stacking
- Memory more likely to be intact after 'black box' emergency event.

Microchip 'Zero-Amp' Battery application research needed.

- Magnetic field tolerance
- FPGA array size for full functionality
- Tolerance of hostile chemical environments
- Sleep & wake-up modes
- Serial comms implementations (software & Hardware)
- Mechanical packaging
- Vibration robustness

What are the Industry, Social & User Paybacks ?

- User
 - Battery reliability/predictability in EV use
 - Current State of battery health/predictive life
- Industry & Commercial
 - Second life commercial viability + pass or share disposal costs
 - Known history of use over time Warranty claims
 - Easing approval for safety critical applications Aerospace
- Social & Environment
 - Green credentials longer useful battery life
 - Lower waste longer re-cycle time

References

- <u>ZeroAMP Ultra low-power computing for everywhere</u>
- <u>Smart | Connected | Secure | Microchip Technology</u>

Thank you & Any questions